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1 Introduction 

The development and spread of driving assistance systems in four-wheel vehicles has been 

expanding to motorcycles(1). Among rider assistance systems, camera-based systems feature object 

recognition and have the potential to respond to traffic conditions more accurately. Consequently, the 

present research focuses on a motorcycle riding assistance system that uses a camera to inform the 

rider when the preceding vehicle is close. The behavior of motorcycles differs from that of four-wheeled 

vehicles, and must be taken into account during the development of functions. One such behavior is 

banking when cornering, which results in the preceding vehicle appearing inclined in the camera image. 

Accordingly, a function that appropriately detects the preceding vehicle based on the bank angle has 

been envisioned. Another motorcycle-specific behavior is the high degree of flexibility with respect to the 

driving trajectory within a lane. Relative vehicle positions relying on lane markings therefore cannot be 

used to distinguish the relevant preceding vehicle from other vehicles. This has lead to envisioning a 

function that identifies oncoming or other non-preceding vehicles based on the behavior of other vehicles. 

Both the ego and other vehicles path prediction algorithms required to realize those functions have 

already been proposed(3). This study examines whether the proposed algorithms select the appropriate 

object and avoid selecting the wrong one in straight line, cornering, and lane changing scenarios. 

2 Functional Overview 

This section provides an overview of the path 

prediction algorithm functionality(3). 

2.1 System functional structure 

Figure 1 shows the functional structure 

of the rider assistance system used in this 

study. The system takes camera images, 

as well as acceleration, angular velocity, 

and vehicle speed as inputs, and uses a 

buzzer sound and a flashing LED as 

outputs. The functional structure of the 

system consists of object detection, ego 

vehicle path prediction, target selection, 

time-to-collision (TTC) estimation, and human machine interface (HMI) output control. Of the 

potential targets detected in the camera images, only the one selected as a focus based on path 

prediction is subject to TTC estimation and output decision. This paper describes both the ego and 

other vehicle path prediction algorithm functions, as well as the target selection function. 

2.2 Ego vehicle path prediction function 

This function for the ego vehicle takes angular velocity and vehicle speed as inputs, calculates 

the turning radius, and then predicts the path of the ego vehicle on the camera image. Figure 2 

shows the predicted path of the ego vehicle as it follows the preceding vehicle and goes by an 

oncoming vehicle. Using the estimated roll angle to correct the path enables appropriate prediction 

that accounts for the banking of the vehicle body even during cornering. 

2.3 Other vehicle path prediction function 

This function calculates the movement vector (direction, magnitude) on the image based on the 

bounding box (BB) coordinates of the detected object and its previous coordinates, and predicts 

the path of other vehicles on the camera image as shown in Fig. 3. Limiting the input to the BB 

data makes it possible to predict paths irrespective of white lines, and without depending on the 

ego vehicle’s position. 

Fig.1: System functional structure 



2.4 Target selection function 

This function assigns a selection priority to target vehicles along the predicted path in order of 

proximity to the ego vehicle. It then calculates the probability of a collision and of a change in path 

based on the predicted path of other vehicles, and excludes vehicles determined to present no risk 

of collision with the ego vehicle. That process leads to selecting the target to focus on, as shown in 

Fig. 4. 

   
Fig. 2: Predicted Path of Ego 

Vehicle 

Fig. 3: Predicted Path of Other 

Vehicles 

Fig. 4: Selected Vehicle Based 

on Predicted Path 

 

3 The Algorithms 

3.1 Ego vehicle path prediction algorithm 

This algorithm involves calculating the path, converting it to camera coordinates, and correcting the 

roll. As shown in Fig. 5, the algorithm establishes a geographic coordinate system using the 

position of the camera on the ego vehicle as the origin, and setting the course of the ego vehicle 

𝑥 axis, and the left side of the course parallel to the ground as the 𝑦 axis. In addition, (𝑥𝑔, 𝑦𝑔) is 

used to indicate an arbitrary point in the geographic coordinates. As shown in Fig. 6, the algorithm 

establishes a camera image coordinate system using the top left of the image as the origin, using 

the width direction as the 𝑥 axis and the height direction as the 𝑦 axis. 

In addition, (𝑥𝑠 , 𝑦𝑠) is used to indicate an arbitrary point in the camera image coordinates. The 

path of the ego vehicle is calculated in the geographic coordinate system shown in Fig. 5 with the 

equation below, which uses the 𝑟[m] turning radius obtained from the vehicle speed and yaw rate. 

 

𝑦𝑔 = 𝑟 − √𝑟
2 − 𝑥𝑔

2 (1) 

 

The following equation is used to convert that path into coordinates in the camera coordinate 

system from Fig. 6 and calculate the predicted path. 

 

𝑥𝑠 =
𝑊𝑠
2
− 𝑦𝑔

𝑊𝑠

2𝑥𝑔 tan (
𝜙
2
)

(2) 

 

In this equation, 𝑊𝑠[pix] is the screen width, and 𝜙[deg] is the horizontal angle of view. At the 

same time, the roll angle 𝜃𝑥[deg] estimated from factors such as the roll rate is used to rotate the 

coordinates to the center of the screen and correct the predicted path. The coordinates after 

correction are indicated by (𝑥𝑠′, 𝑦𝑠′). 
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In this equation, 𝐻𝑠[pix] is the screen height. To avoid being unable to capture the preceding 

vehicle due to excessive variation in the path, the straight line state is determined and the 

                                

      



predicted path is fixed to straight ahead of the camera when moving in a straight line. The yaw rate 

is used to determine the straight line state. 

  

Fig. 5: Top View of Ego Vehicle’s Predicted 

Path 

Fig. 6: Camera image of Ego Vehicle’s 

Predicted Path 

 

3.2 Other vehicle path prediction algorithm 

This algorithm involves calculating the movement vector and deriving path coordinates. As 

shown in Fig. 7, the direction and magnitude of vehicles are, respectively, obtained by detecting 

the BB coordinates of the current frame and from the difference with the detected BB coordinates 

of a given previous frame. 

 

∠𝐀 = tan−1 (
𝑦𝑡 − 𝑦𝑡−𝐿
𝑥𝑡 − 𝑥𝑡−𝐿

) (4) 

|𝐀| = √(𝑥𝑡 − 𝑥𝑡−𝐿)
2 + (𝑦𝑡 − 𝑦𝑡−𝐿)

2 (5) 

 

In these equations, ∠𝐀 is the direction of the movement vector, |𝐀| is its magnitude, L is the 

difference in the number of frames, (𝑥𝑡 , 𝑦𝑡) represents the coordinates of the center of the base of 

the detected BB at time 𝑡[frame], and (𝑥𝑡−𝐿 , 𝑦𝑡−𝐿) represent the coordinates for 𝐿[frame] earlier. 

In addition, the BB coordinates used to calculate the movement vector cancel out the ego vehicle 

movement component to extract only the other vehicle movement component. The predicted path 

of other vehicles is calculated on the premise that it will keep extending in a straight line in the 

direction of the vector on the screen. 

 

𝑦𝑠 = (𝑥𝑠 − 𝑥𝑐)
sin(∠𝐀)

cos(∠𝐀)
+ 𝑦𝑐 (6) 

 

In the equation, (𝑥𝑐 , 𝑦𝑐) represents the center coordinates of the detected BB. 

3.3 Target selection algorithm 

This algorithm consists of determining target selection priority based on the predicted path of the 

ego vehicle, calculating the probability of collision based on the predicted path of other vehicles, 

calculating the probability of a change in the trajectory of other vehicles, and selecting the target 

vehicle. 

3.3.1 Determining the target selection priority 

Figure 8 illustrates how target selection priority is determined. After narrowing down potential 

targets in the selection range, the target selection is set in order of the smallest to largest 

values of 𝑃 obtained from the equation below. 

 

𝑃 = 𝑘𝑃𝑑𝑦 + (1 − 𝑘𝑃)𝑑𝑥 (7) 

 

In the equation, 𝑑𝑥[pix] is the distance in the 𝑥 axis direction between the BB base center 
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coordinates and the ego vehicle’s path, 𝑑𝑦[pix] is the distance in the 𝑦 axis direction 

between the BB base center coordinates, and 𝑘𝑃 is a weight coefficient that determines 

whether to prioritize proximity to the vehicle or proximity to the predicted path. The target 

selection range is defined as a range consisting of the width of the ego vehicle centered on 

the predicted path combined with a range extended vertically from the end of the predicted 

path. Differences in target vehicle sizes are taken into account by considering objects that 

overlap with the target selection range and the BB base to be within the target selection 

range. 

3.3.2 Calculating the collision probability 

Figure 9 illustrates how the probability of a collision is calculated. The Gaussian distribution 

obtained from the predicted path and the integral of the 𝑊 ego vehicle width range are used 

to calculate the collision probability. The average 𝜇 of the Gaussian distribution represents 

the 𝑥 coordinates at the intersection of the predicted path and the bottom edge of the screen, 

while the standard deviation 𝜎 defines the reciprocal of the magnitude of the movement 

vector based on the BB center coordinates. 

  
 

Fig. 7: Movement Vector and 

Other Vehicle’s 

Predicted Path 

Fig. 8: Target Selection 

Priority 

Determination 

Fig. 9: Collision Probability 

Calculation 

 

3.3.3 Calculating the probability of a change in trajectory 

Two probabilities of a change in trajectory are calculated based on the magnitude of the 

movement vector and on the continuity of its direction. The probability of a change in 

trajectory based on the magnitude of the movement vector decreases according to the 

premise that a change in trajectory is unlikely as the magnitude of the vector increases. The 

probability of a change in trajectory based on the continuity of the direction of the movement 

vector decreases according to the premise that a change in trajectory is unlikely while the 

variation in direction remains withing a certain range. 

3.3.4 Selecting the target 

Vehicles requiring caution are selected in order of highest priority among the vehicle inside 

the target selection range. In addition, vehicles with both a collision probability below the 

threshold and one of the two probabilities of a change in trajectory below the threshold are 

excluded from the selection targets. 

 

4 Testing 

Table 1 shows the items that were validated for the path prediction algorithm. 

 

Table 1: Validation Items 

No. Validation item 

A The correct object is selected as the target vehicle. 

B No incorrect object is selected as the target vehicle. 

 

4.1 Test device 

The experiment was conducted using a camera system implementing all of the functions shown 

in Fig. 1. The device was equipped with a camera and an inertial measurement unit (IMU) and 
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installed on a motorcycle, enabling the real time execution of the proposed algorithm. Individual 

video frames, angular velocity, and vehicle speed can also be retrieved ahead of time, making it 

possible to enter that information from an external source and validate it analytically. In this 

experiment, the validation scenarios were conducted by driving on a closed course and the 

information retrieved was verified through analysis. 

4.2 Test conditions 

The validation scenarios, validation sections, index, and collection method used as test 

conditions are described below. 

4.2.1 Validation scenarios 

Table 2 shows the validation scenarios for validation item A. 

 

Table 2: Scenarios to Confirm the Correct Object Is Selected (Validation Item A) 

Scenario 

No. 
A00 A01 A10 

Details Approaching a 

stationary vehicle ahead 

Following the preceding 

vehicle 

Following the preceding 

vehicle while cornering 

Overview 

   

Scenario 

No. 
A20 A21 A22 

Details The preceding vehicle 

cuts into the lane 

The preceding vehicle 

moves into the other 

lane 

The ego vehicle cuts 

into the lane 

Overview 

   

 

Table 3 shows the validation scenarios for validation item B. 

 

Table 3: Scenarios to Confirm No Incorrect Object Is Selected (Validation Item B) 

Scenario 

No. 
B00 B01 B02 

Details Overtaking a stationary 

vehicle in the other lane 

Maintaining distance 

from the vehicle in the 

other lane while driving 

Moving past a vehicle 

cornering ahead while 

driving straight 

Overview 

   
Scenario 

No. 
B10 B20 B21 

Details 

Maintaining distance 

from the vehicle in the 

other lane while 

cornering 

The preceding vehicle 

cuts into the lane 

The preceding vehicle 

moves into the other 

lane 

Overview 

   



Scenario 

No. 
B22   

Details 
The ego vehicle moves 

into the other lane 
  

Overview 

 

  

 

4.2.2 Validation sections 

The validation sections were defined as a frame in which the ego vehicle drives in 

accordance with the conditions and the target vehicle is correctly detected. However, in the 

lane changing scenes, different validation sections were set based on the driving state, as 

shown in Figs. 10 and 11. 

 
Fig. 10: Validation Section for the Preceding Vehicle Lane Change Scenario 

 

 
Fig. 11: Validation Section for the Ego Vehicle Lane Change Scenario 

 

4.2.3 Index 

The index represents the correct vehicle selection ratio. That ratio consists of the 

proportion of frames where the algorithm selects the intended frame within a validation 

section. 

4.2.4 Collection method 

The correct vehicle selection ratio was calculated using the number of frames in the validation 

section after counting the number of correct frames. The number of correct frames was 

counted by determining the correct vehicle selection from the images output by the system. 

The criteria for correctness depends on the scenario. Table 4 shows decision examples for 

each validation item. In the validation A scenarios where the vehicle is in the same lane as the 

ego vehicle, correctness was defined as the ability to select the preceding vehicle in the same 

lane. In the validation B scenarios where the vehicle is not in the same lane as the ego 

vehicle, correctness was defined as the ability to select the ability to select the vehicle in the 

other lane. The collection process was designed to retrieve at least 10 seconds of data for 

each scenario. 

Preceding vehicle

moves into other lane

Preceding vehicle

cuts into the lane
Driving pattern

Start

position

End

position

Validation section

for the scenario A21 B21 B20 A20

Validation section

for the scenario

Ego vehicle

moves into other lane

Ego vehicle

cuts into the lane

B22

(5 seconds)

A22

(5 seconds)

Riding pattern

Start

position

End

position



 

Table 4: Examples of Correct Vehicle Selection Decision 

 Validation item A Validation item B 

Correct 

  

Incorrect 

  

 

4.3 Results 

This section presents the collected results for the correct vehicle selection ratio. Table 5 shows 

the collected results for validation item A. The A00 and A01 results confirm that the vehicle is 

correctly selected when driving in a straight line, While the A10 results show that the correct 

selection ratio drops during cornering when there is a lot of distance between the vehicles. The 

A20 scenario also demonstrated a drop in the correct vehicle selection when the preceding vehicle 

cuts into the lane. In contrast, the A21 scenario showed that when the preceding vehicle moves 

into the, the system can continue to make the selection while that vehicle is still in the same lane 

as the ego vehicle. In addition, the A22 confirms that the target vehicle is selected correctly after 

the preceding vehicle has fully entered the ego vehicle’s lane. 

 

Table 5: Collected Results for Selecting the Correct (Validation Item A) 

Scenario A00 A01  A10  A20 A21 A22 

Vehicle 

speed 
50 km/h 50 km/h 50 km/h 50 km/h 50 km/h 50 km/h 50 km/h 50 km/h 

Distance 

between 

vehicles 

- 12 m 40 m 12 m 40 m - - - 

Turning 

radius 
- - - 425 m 425 m - - - 

Correct 

selection 

ratio 

96.7% 100% 100% 98.2% 66.0% 56.1% 87.8% 82.9% 

 

Table 6 shows the collected results for validation item B. The B00 and B01 results confirm that a 

other vehicle in the other lane is not incorrectly selected when driving in a straight line, while the 

B02 results confirm that going past an oncoming vehicle in a curve ahead does not incorrectly 

select that vehicle. In those scenarios, the correct answer cannot be obtained using only ego 

vehicle information, but using the predicted path of other vehicles made it possible to exclude them 

from the selection. The B10 results confirm that other vehicles ahead of the ego vehicle are not 

incorrectly selected during cornering. The B20 results show that the preceding vehicle cutting into 

the lane is not selected while it is still in the other lane. Similarly, the B21 results show that the 

preceding vehicle moving into the other lane is not selected after it enters that lane. In addition, the 

B22 results confirm that the preceding vehicle is not selected when the ego vehicle finishes moving 

into the other lane. 

 

                    

                    



Table 6: Collected Results for Not Making an Incorrect Selection (Validation Item B) 

Scenario B00 B01  B02 B10 B20 B21 B22 

Vehicle 

speed 
50 km/h 50 km/h 50 km/h 30 km/h 50 km/h 50 km/h 50 km/h 50 km/h 

Distance 

between 

vehicles 

- 12 m 40 m - 40 m - - - 

Turning 

radius 
- - - 80 m 425 m - - - 

Correct 

selection 

ratio 

98.9% 100% 100% 84.9% 86.0% 89.1% 98.6% 96.6% 

 

4.4 Observations 

This section examines the factors behind incorrect selections and their impact on the system. 

4.4.1 Scenario A10: Target selection during cornering 

The factors leading to incorrect selection were examined first. Table 5 shows that during 

cornering, the correct selection ratio is lower at a vehicle distance of 40 m than at a distance 

of 12 m. This is expected to be due to either the ego vehicle path prediction algorithm or to the 

actual driving during the test. The algorithm was assessed first. The ego vehicle path 

prediction algorithm estimates the turn and predicts the path based on the current turning 

radius of the ego vehicle. Consequently, the further the distance the greater the span of 

variation, making it more difficult to capture the preceding vehicle in the path of the ego 

vehicle. The reason for the drop in the correct selection ratio at further distances is thought to 

be that the larger span of variation in the path of the ego vehicle relative to the variation in the 

turning radio prevented the capture of the preceding vehicle in the path of the ego vehicle. 

Next, the driving during the test was examined. Sections with an incorrect selected were 

observed to generally involve driving at a smaller turning radius than the path. Figure 12 

shows the turning radius distribution for correct and incorrect selections for the data from a 

single trial on a road with a 425 m turning radius and a vehicle distance of 40 m. The graph 

makes it clear that that the ego vehicle was driving at a turning radius close to 425 m when 

correct selections were made, but at a turning radius around 250 m to 350 m when incorrect 

selections were made. The drop in the correct selection ratio is believed to stem from 

temporarily driving at a smaller turning radius to adjust the driving position, leading to 

predicting a path inward of that of the preceding vehicle. 

 
Fig. 12: Turning Radius Distribution for Correct and Incorrect Selections in the Following while 

Cornering Scenario. 

 

  

  

  

  

                                 

  
  
  
 
  

              

 

  

  

  

  

                                 

  
 
 
 
 
 
  

                  

                



 

4.4.2 Scenario A20: Preceding vehicle cutting into the lane 

The A20 scenario was examined next. As seen in Table 5, this scenario has a poorer 

correct selection ratio than the other lane change scenarios. That drop is attributed to the path 

prediction algorithm for other vehicles. Figure 13 shows the camera images for the A20 

scenario. The light blue solid lines represent the predicted path of the ego vehicle, while the 

orange solid lines represent the predicted path of other. In addition, the green box around the 

preceding vehicle indicates it has been selected as the target vehicle, and the orange box 

indicates the other vehicle has been excluded from selection based on its predicted path. The 

number at the upper left is the frame number. 

 

   
Fig. 13: Target Selection when the Preceding Vehicle Cuts into the Lane 

 

The images demonstrate that the other vehicle was excluded from the selection based on its 

predicted path. The same phenomenon was observed in other data for the same scenario. In 

the preceding vehicle lane change scenarios, that vehicle only moves toward the side in the 

image. It seems that the algorithm therefore predicts a path that does not collide with the ego 

vehicle, and excludes the vehicle from the selection. This makes it a scenario that is not 

covered by the current algorithm. 

Furthermore, the impact of this phenomenon on the system was examined. The durations of 

the delay in selecting the target were collated to assess the impact of that delay due to the 

exclusion of the vehicle from the selection. The selection delay was obtained using the A20 

test conditions by collating the time from a stable continuous full second until the first frame of 

the section in which the vehicle was selected after the preceding vehicle entered the ego 

vehicle’s lane. The results are shown in Fig. 14, and indicate that the target vehicle is chosen 

after a maximum delay of 2.2 seconds. There are concerns that during that selection delay, 

the system would not react to approaching the preceding vehicle and fail to activate. 

 
Fig. 14: Duration of Target Selection Delay When the Preceding Vehicle Cuts into the Lane 
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4.4.3 Scenario A22: Ego vehicle cutting into the lane 

The impact on the system of the delay in selecting the target vehicle after changing lanes 

was examined for the A22 scenario. The selection delay was obtained using the A22 test 

conditions by collating the time taken for the system to stabilize and select the target vehicle 

after the ego vehicle finishes its lane change. The results are shown in Fig. 15, and indicate 

that the target vehicle is chosen after a maximum delay of 1.6 seconds. There are concerns 

that during that selection delay, the system would not react to approaching the preceding 

vehicle and fail to activate. 

 
Fig. 15: Duration of Target Selection Delay When the Ego Vehicle Cuts into the Lane 

 

5 Conclusion 

This study analyzed and examined the effectiveness of ego vehicle and other vehicle path prediction 

algorithm that accounts for ego vehicle behavior for a rider assistance system intended for two-wheeled 

vehicles. The following results were obtained. 

• The proposed algorithm was confirmed to select the correct target object in six of a total of eight 

scenarios involving straight line driving, cornering, and lane changes. 

• The proposed algorithm was confirmed to avoid selecting an incorrect target object in all of the eight 

scenarios involving straight line driving, cornering, and lane changes. 

• In the scenario involving the preceding vehicle cutting into the lane, it was found that correct selection of 

the preceding vehicle was limited to 56% of the frames. At the same time, incorrect selection was 

identified as a factor of the other vehicle path prediction algorithm, and the current algorithm was 

determined to be unable to address that scenario. 

To achieve the eventual adoption of the algorithms in rider assistance systems for two-wheeled 

vehicles, the next step will be to address the issues brought to light in this study and perform evaluations 

in situations similar to the actual use environment. 
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