

Do motorcyclist injuries depend on motorcycle and crash types? An analys is based on the German In-Depth Accident Study Jolyon Carroll^a, Fritjof Gidion^a, Matteo Rizzi^b, Nils Lubbe^a

a) Autoliv Research, Sweden

b) Swedish Transport Administration (Trafikverket), Sweden

3 October 2022 jolyon.carroll@autoliv.com

Contents

- Introduction
- Method
- Results
 - Descriptive statistics
 - Injury distributions
 - Injury priorities
- Conclusions

Introduction

- High-level statistics provided by CARE, EUROSTAT
- European Commission report identifies the main trends in the EU

European Road Safety Observatory

riders - 2021

Facts and Figures - Motorcyclists

Figure 3. Number of motorcycle fatalities in the total number of fatalities, per country in the EU27 (2019). Source: CARE

3 3 October 2022 jolyon.carroll@autoliv.com

		GIDAS	5 AIS3+ injuries	sustained by motorcyclists					
Full Sample, n=134 Thorax (T) Lower Extr. (L) Head (H) Upper Extr. (U)	$\begin{array}{c cccc} 7 & \underline{\Sigma} \\ \hline 31.3\% & 31.3\% \\ 29.9\% & 61.2\% \\ 18.3\% & 79.5\% \\ 6.3\% & 85.8\% \end{array}$	Car Sample, n=304 Lower Extr. (L) Thorax (T) Head (H) L. Skeletal (sk)	Σ 50.7% 50.7% 20.1% 70.8% 18.1% 88.9% 92.9% 92.9%	Object sample . n=1 Lower Extr. (L) Thorax (T) Head (H) Spine (S)	70 ∑ 27.1% 27.1% 22.4% 49.5% 21.2% 70.6% 10.0% 80.6%	Thor Head Low Upp	<u>Road sample, n=91</u> ax (T) 1 (H) er Extr. (L) er Extr. (U)	36.3% 26.4% 16.5% 15.4%	<u>5.</u> 36.3% 62.7% 79.2% 94.6%
T Internal Org. (io) Skeletal (sk) io Lung Thorac. cavity inj. sk Rib cage	50.0% 50.0% 41.5% 91.5% 56.9% 56.9% 31.3% 88.2% 100% 100 %	sk Femur Tibia T Internal Org. (io) Skeletal (sk) io Lung	60.1% 60.1% 35.7% 95.8% 45.9% 45.9% 44.3% 90.2% 46.4% 46.4%	L Skeletal (sk) sk Fenur Tibia T Internal Org. (io) Skeletal (sk)	89.1% 89.1% 58.3% 58.3% 26.8% 85.1% 52.6% 52.6% 42.1% 94.7%	T	Skeletal (sk) Internal Org. (io) ik Rib cage io Lung Thorac. cavity inj.	72.7% 27.3% 100 % 66.7% 33.3%	72.7% 100 % 100 % 66.7% 100 %
L Skeletal (sk) sk Fennur Tibia H Internal Org. (io) Skeletal (sk)	93.3% 93.3% 61.4% 61.4% 25.3% 86.7% 47.4% 47.4% 40.9% 88.3%	Thorac. cavity inj. sk Rib cage H Internal Org. (io) Skeletal (sk) io Cerebrum	46.4% 92.8% 100 % 100 % 52.7% 52.7% 40.0% 92.7% 93.1% 93.1%	io Lung Thorac. cavity inj. sk Rib cage H Internal Org. (io) Skeletal (sk)	65.0% 65.0% 35.0% 100 % 100 % 100 % 47.2% 47.2% 38.9% 86.1%	H J L	Internal Org. (10) Skeletal (sk) [0] Cerebrum [k] Base (basilar) Skeletal (sk)	54.2% 41.7% 84.6% 90.0%	54.2% 95.9% 84.6% 90.0%
io Cerebrum Brain stem sk Base (basilar) Vault U Skeletal (sk)	76.9% 76.9% 16.2% 93.1% 79.2% 79.2% 20.8% 100 % 91.8% 91.8%	sk Base (basilar) Vault	72.7% 72.7% 27.3% 100 %	io Cerebrum Brain stem sk Base (basilar) Vault S Thoracic spine (tho) Cervical spine (ter)	76.5% 76.5% 17.6% 94.1% 78.6% 78.6% 21.4% 100 % 41.2% 41.2% 35.3% 76.5%	U S	k Femur Tibia Skeletal (sk) k Radius Humerus Ulna	73.3% 13.3% 100 % 50.0% 28.6% 21.4%	73.3% 86.6% 100 % 50.0% 78.6% 100 %
sk Radius Ulna Humerus	30.8% 68.0% 14.1% 82.1%			Lumbar spine (lu) the Thoracic cord Vertebra cer Cervical cord Vertebra lu Vertebra Nerves	17.6% 94.1% 71.4% 71.4% 28.6% 100 % 66.7% 66.7% 16.7% 83.4% 66.7% 66.7% 33.3% 100 %				

Gidion et al. (2021). Motorcyclist injuries: Analysis of German in-depth crash data to identify priorities for injury assessment and prevention. Accident Analysis and Prevention.

Introduction

EU data differentiate between moped and motorcycle riders

	Fatalities 2019
Motorcyclists	N
0	Ð
3578 fatalities	61
(16% of all fatalities)	(3%)

Moped riders

610 fatalities (3% of all fatalities)

but, so far, our injury priorities do not

Method

GERMAN IN-DEPTH ACCIDENT STUDY

- GIDAS (release, January 2022)
- Fully reconstructed cases
- Motorcycles of type L1e and L3e
- Main rider (driver), no pillion rider
- Rider was wearing a helmet or had 'unknown' helmet wearing

Method

- AIS injury codes (2015 Revision)
- AIS2+ or AIS3+ injuries of PTW riders

THE ABBREVIATED INJURY SCALE © 2015 Revision

Association for the Advancement of Automotive Medicine

- Femur fracture
 - Femur shaft fracture

complex; comminuted; segmental; Winquist IV

open

AIS Code	Description	
1	Minor	
2	Moderate	
3	Serious	
4	Severe	
5	Critical	
6	Maximal	
9	Unknown	

Method – Groups

Pre-/in-crash kinematics of rider	Fall before contact with another participant (1)	Free flight (2); scooping (3); collision without scooping (4)	Free flight (2); scooping (3); collision without scooping (4)
Type of Powered Two-Wheeler	Any MC - PTW, nfs (40); Scooter (42); chopper (43); tourer (44); sport motorbike (45); enduro (46)	Scooter (42)	PTW, nfs (40); chopper (43); tourer (44); sport motorbike (45); enduro (46)

Results – Groups	ts – Groups Falling / sliding - any MC		Upright - any other MC	
	Falling/sliding – any MC	Upright – Scooter	Upright - any other MC	
Number of cases	838	237	770	
Number of riders	839	237	775	

AIS2+ Injuries by Body Region

Top 5 AIS2+ Injuries by group

Falling / sliding - any MC

- 1. Cerebral concussion 10.0%
- 2. Clavicle fracture 8.3%
- 3. [Fracture to the] rib cage 6.1%
- 4. Radius fracture 5.5%
- 5. Tibia fracture 5.0%

Upright - Scooter type MC

- 1. Cerebral concussion 15.3%
- 2. Tibia fracture 6.3%
- Femur fracture 6.3%
- 4. Clavicle fracture 5.9%
- 5. Radius fracture 4.2%

Upright - any other MC

- 1. Cerebral concussion 7.8%
- 2. Tibia fracture 7.4%
- 3. Radius fracture 6.4%
- 4. Femur fracture 5.1%
- 5. Vertebra 4.6%

AIS3+ Injuries by Body Region

Top 5 AIS3+ Injuries by group

Falling / sliding - any MC

- 1. [Fracture to the] rib cage 17.2%
- 2. Femur fracture 13.0%
- 3. [Injury to] lungs 11.3%
- 4. Cerebrum 7.2%
- 5. Thoracic cavity injury 5.7%

Upright - Scooter type MC

- 1. Femur fracture 28.9%
- 2. [Fracture to the] rib cage 12.5%
- 3. Tibia fracture 7.7%
- 4. [Injury to] lungs 6.7%
 - Base (basilar) fracture 6.7%

Upright - any other MC

- 1. Femur fracture 16.5%
- 2. [Fracture to the] rib cage 11.1%
- 3. Tibia fracture 9.3%
- 4. [Injury to] lungs 8.0%
- 5. Cerebrum 7.2%

Conclusions (1/2)

- Injuries are broadly similar...
 - Whether you fall before any other collision or crash upright
- The head, lower extremity and upper extremity are the most frequently AIS2+ injured body regions
- Precisely:
 - Cerebral concussion, tibia fracture, femur fracture, clavicle fracture, radius fracture and fractures of the rib cage
- The head, lower extremity, and thorax are most frequently injured at the AIS3+ level
- Precisely:
 - Fractures to the base of the skull, cerebrum injuries, femur fracture, tibia fracture, rib cage fractures, and injuries to thungs or thoracic cavity

Conclusions (2/2)

- Some differences exist...
- Femur injuries were more frequent for upright scooter riders than for other types of motorcyclists or those falling before a collision
 - The majority of femur fractures originate from contact with a car
- Despite wearing helmets, powered two-wheeler riders still sustain head injuries
 - Riders of other types of motorcycles sustain more head injuries and more severe head injuries than scooter riders
- Particular focus on:
 - Femur protection for upright scooter riders in frontal impacts
 - Head protection for (other types of) motorcycle riders

Saving More Lives

